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ABSTRACT 

The first on-orbit experiment of the Small 
Expendable Deployer System (SEDS) f o r  tethered 
satellites will collect telemetry data for tether 
length, rate of deployment, and tether tension. The 
post-flight analysis will use this data to reconstruct 
the deployment history and determine dynamic 
characteristics such as tether shape and payload 
posit ion. Linearized observability analysis has 
determined that these measurements are adequate to 
define states for a two-mass tether model, and two state 
estimators have been written. 
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INTRODUCTION 

The first flight of the tethered Small Expendable 
Deployer System (SEDS) will be launched from a Delta 11. 
A 14 kg payload will be deployed downward to a tether 
length of 2 km, where it will librate to vertical and 
the tether will be cut. 

The data system will record the number of reel- 
turns as the tether is deployed, and tether tension. 
These measurments will be downlinked to a ground station 
so that deployment can be monitored, and the data will 
be stored for post-flight analysis. 

The telemetry data will provide measurements of 
tether length, rate of deployment and tether tension. 
To determine if these measurements are adequate for 
reconstruction of the deployment dynamics, system 
observability calculations have been made (based on a 
constantly-updated linear model), and two state 
estimators have been developed. 
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OBJECTIVES 

The objectives of the summer faculty research were 
to: 

1. Determine if the turns-count and tension measurements 
are adequate to reconstruct the deployment dynamics. 

2. Determine if the measurement sampling rate is 
adequate. 

v- 2 



STATE MODEL 

Several computer simulations of tether deployment 
dynamics are available, ranging from planar simple- 
pendulum representations to three-dimensional partial- 
differential-equation models. The summer investigator 
chose Snergy Science Laboratories (ESL) BEADSIM model to 
provide the tether dynamics state equations, since it is 
relatively simple and yet still produces results that 
are comparable to more complex models. BEADSIM is a 
lumped mass model, in which masses or "beads" are added 
as the tether becomes longer. No out-of-orbit-plane 
motion is modelled, and the external forces on each bead 
are the gravity gradient, aerodynamic drag, and Coriolis 
and centripetal accelerations. The equations are 
written using a Cartesian coordinate frame with an 
origin at the center of mass and moving at orbit speed 
(Fig. 1). 

FIG. 1. BEADSIM Tether Model. 

Each bead's motion is governed by a second-order 
differential equation, with a uniform tether tension 
providing the coupling between beads. Four states 
represent the motion of each bead: the x and y 
positions, and the x and y velocities. Deployment 
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characteristics such as tether shape, vibration 
amplitudes, and payload position and velocity are 
determined as the states change in time. 

Simulations like BEADSIM are dependent on initial 
conditions for the states; any changes in the initial 
conditions will produce a different deployment 
trajectory (Fig. 2). The SEDS measurements would not be 
necessary for post-flight analysis if the initial 
positions and velocities of the deployer and payload 
were known exactly, and if parameters such as the 
aerodynamic drag coefficient were accurate. However, 
variations in the initial conditions greatly effect 
tether deployment time, for example, so that an estimate 
of initial conditions is not adequate to determine 
deployment characteristics. 

FIG. 2. Changes in the Initial Conditions Produce 
Different Deployment Trajectories. 

The SEDS. measurements consist of tether length 1, 
length rate 1, tension T, and the Delta second stage 
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position and velocity. These measurements are nonlinear 
functions of the states, represented by the following 
measurment equations 

aG 
H = -  

a~ 

where 1 represents the vector of measurements at a given 
time, and y the corresponding states. The BEADSIM state 
equations are also nonlinear, and may be written as 
follows 

Ycurrent 

The measurement and state equations will be used to 
determine system observability and to develop the state 
estimators. 

SYSTEM OBSERVABILITY ANALYSIS 

Given state and measurement equations like those in 
(1) and ( 2 ) ,  a system is totally observable if all 
states can be determined from the measurements. For 
linear systems, a full-rank observability matrix ensures 
system observability. Since our system is nonlinear, a 
linear approximation based on the first term of a Taylor 
series will be used, so that the measurement equations 
(1) become 

1 = Hy 

and the state equations become 

where H and A are the following matrices 

( 3 )  

( 5 )  
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aF 
A = -  

a~ 

Closed-form expressions for the elements in these 
matrices were derived from the functions F and G, so 
that errors from numerical differentiation were avoided. 
Since these matrices are evaluated at the current values 
f o r  the states y, they will change as the states change. 
Hence system observability based on these matrices must 
be checked at each time step. 

Ycurrent 

The observability matrix is defined as 

0 -  

H 

( 7 )  

where :? is the number of states to be estimated. A is 
an 8 x 8 matrix f o r  eight states corresponding to two 
beads, and H i s  a 7 x 8 matrix for the seven 
measurf?ments 1, 1, tension T, and the x, y position and 
velocity of the Delta. The observability matrix 0 is 56 
x 8. The rank is the number of independent rows in 0, 
and is calculated using the singular value 
decomposition. The number of nonzero singular values at 
each time step was always eight, indicating that the 
linearized system for two beads is totally observable. 
Hence the positions and velocities of the tether 
deployer and payload may be determined by these 
measur2ments. 

The rank of the observability matrix was also 
calculated without the tension measurement, and the 
system was still totally observable. This analysis 
indicates that tension measurements are not necessary to 
reconstruct the tether dynamics using two beads. 
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STATE ESTIMATORS 

The measurements are not the same variables as the 
states, so that deployment characteristics such as 
tether shape cannot be directly determined from the 
measurements. Furthermore, the measurement process adds 
noise. A state estimator will use the measurements as 
input, filter the measurement noise, and then output the 
values of the states. Two estimators have been written: 
a batch estimator that finds the best initial conditions 
to minimize measurement errors, and a Kalman estimator 
that uses the current measurements to estimate the 
states. Both estimators process simulated measurements 
generated by BEADSIM to which white noise was added. 
The standard deviations of the noise are listed in Table 
1. 

TABLE 1 Standard Deviations for Measurement Noise 

I Measurement I a 

length 1 
length rate i 
tension T 
Delta 

Delta 
( ;: position 

velocity 

0.01 m 
0.001 m/s 
0.01 N 
1.0 m 
1.0 m 
0,001 m/s 
0.001 m/s 

Least-Squares Batch Estimator 

The least-squares batch estimator processes a batch 
of measurements to estimate initial conditions. The 
user inputs approximate initial conditions yo for the 
states, and the estimator integrates forward over the 
number of time steps for which measurements are 
available. The integrated values for the states at each 
time step are used to calculate measurement values ? for 
tether length, length rate, etc., which are then 
com ared to the actual measurements 1. The error vector 

multiplied by a gain matrix that minimizes the errors in 
a lease-squares sense, and the result is added to the 

11- 4 1 between the actual and calculated measurements is 
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guess for the initial conditions yo. This procedure is 
based on Gaussian differential correction, and is 
repeated until the measurement errors {l-?] are small 
enough. The current iterate for the initial conditions 
is assumed to be correct, and the last set of integrated 
state values represent the true states. 

Since BEADSIM adds more states as the tether is 
deployed, the measurements can be divided into batches 
that change when a bead is added. When enough tether 
has been deployed to add a third bead, the current batch 
of measurements is processed to determine initial 
conditions f o r  the first two masses. The next batch of 
measurements is used to determine initial conditions for 
the third bead, and the process continues until all 
beads have been added. 

Estimators for dynamic systems use the linearized 
system's transition matrix to define the relationship 
between initial conditions and later state values. The 
state transition matrix @(t,to) is the transformation 
that takes the initial state yo into the later state y 

For linear systems, the state transition matrix obeys 
the same differential equation as the states themselves 

i(t) = AO 

and can be integrated forward in time along with the 
state equations. For nonlinear systems, however, 
equation (9) is a linearized approximation valid only in 
a neighborhood of the current state value. As the 
integration progresses and the current state gets 
further from the initial conditions, the approximation 
becomes inaccurate and the state transition matrix does 
not produce the same state values as the integrated 
state equations. This inaccuracy reduces the ability of 
the least-squares batch estimator to process 
measurements far from the initial conditons. Although 
the batch estimator appeared to estimate the correct 
initial conditions for two-bead tether simulations, the 
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principal investigator feels that a Kalman state 
estimator is more accurate. 

Extended Kelman Estimator 

Kalman filters are based on linear system theory, 
but can be used with an integrator to extend the 
algorithm to nonlinear processes. Unlike the batch 
estimator, measurements are processed one-at-a-time, so 
the current set of measurements are used to estimate the 
current state. 

As an example, consider a Kalman estimator that 
processes a measurement 1 and estimates a state y. An 
integrator predicts an estimate of the state yl at time 

, and that eskimate is used to calculate a value for 
t e measurement 1. The actual measurement 1 is compared 
to 9, and the error {l-?} is multiplied by a gain G. 
G(1-9) is the correction that is added to yl to give a 
better estimate of the state at time ti. The integrator 
goes forward another time step using the corrected state 
value at time tl, and a new correction is calculated 
from the next measurement. 

Fig. 3. Kalman Estimator Process. 
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The gains G are calculated by a minimum variance 
estimation algorithm based on assumed measurement noise 
statistics. Process noise statistics may also be 
included, 5 0  that the measurment noise and process noise 
become adjLstments to tune the filter. 

The extended Kalman filter uses the full nonlinear 
state equations to predict the next state, but still 
relies on the linearized state model for the state 
transition matrix, and a linearized measurement 
equation. Unlike the batch estimator, the Kalman filter 
only needs the state transition matrix that takes the 
current state to the next state 

so that the linearizing approximations that made the 
batch estimator inaccurate do not occur. hs a check, 
the estimator can multiply the current state y(t1) by 
the state -:ransition matrix and compare the result with 
that produced by integration of the nonlinear equations. 
Throughout the deployment, the two-bead state values 
agree to at least four decimal digits using a one-second 
time step, indicating that this time step is small 
enough to accomodate any linear approximations in the 
Kalman filter. 

Several algorithms are available for coding the 
Kalman filter. The traditional filter algorithm 
produced overflows, so the U-D square-root factorization 
algorithm was programmed. This coding is more stable 
according to the published literature, but although it 
did not overflow it could not accurately estimate the 
tether angle during deployment. It was also extremely 
sensitive to assumed noise levels that tune the filter. 
Since the U-D algorithm could not produce satisfactory 
results, the traditional algorithm was modified to 
include process noise, and with this modification it 
successfully estimated the (two-bead) tether dynamics 
throughout deployment. The maximum error between the 
"true" states from BEADSIM and the estimated states was 
lo%, and occurred in the vertical position of the 
endmass. This error results from using only two-beads 
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in the estimator, as compared with the 21 beads used the 
generate the "true" states. A slight reduction in error 
was achieved by adjusting the masses of the two beads as 
the tether deployed, but a multibead capability must be 
added to the estimator to further reduce errors. 
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CONCLUSIONS AND RECOMMENDATIONS 

The system observability analysis has indicated 
that tether length, length rate, and Delta position and 
velocity measurements are adequate to estimate positions 
and velocities of a two-bead tether model. The Kalman 
filter produces estimates within 5% of the "true" states 
for the first three-quarters of deployment, with a 
maximum of 10% error when fully deployed. Both the 
observability analysis and the estimators indicate that 
tension measurments are not necessary; noise levels and 
error bias associated with tension measurements may 
actually degrade the estimation process. The data 
sampling rates proposed at this time appear to be 
adequate to produce measurements at the one-second time 
interval needed by the Kalman estimator. 

Recommendations for improvement include the 
addition of software to add more beads in the estimation 
process. The partial derivatives for the A and H 
matrices of equations ( 5 )  and (6) must be derived f o r  
multiple beads, and mechanisms developed for adding 
columns and rows to the gain and covariance matrices 
when beads are added. This improvement will reduce 
errors as well as add the capability to estimate 
flexible tether shape and vibrations. 

The measurment noise added for simulation purposes 
was not as "white" as desired, due to correlation in the 
Turbo-Pascal random number generator. Noise models that 
are statisically more correct should be used, and 
accurate noise models for the tether length and length 
rate measurements should be developed. This would 
entail the development of a tether-reel dynamics model 
that would translate the turns-count data into length 
and length-rate measurments. The model should reflect 
the periods and biases associated with changes in the 
winding directions. 

An alternate system model using polar coordinates 1 
and 8 rather than the Cartesian coordinates of BEADSIM 
may produce a more accurate estimator. The tether 
length and length rate measurements will then be linear 
functions of the states, which may reduce current errors 
due to linearization. 
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